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Abstract 

The study investigates the efficacy of Whooping cough control measures with the use of 

mathematical modelling application. The primary purpose of the study is to provide a 

vaccination model to carry out a stability analysis on control measures so as to evaluate their 

efficiency and effectiveness. This includes a maternally derived immunity, susceptible, infected 

and recovered compartmental model (MSIR). Data were collected on incidences of whooping 

cough from the Federal Medical Centres of the four states across the North Eastern states 

of Nigeria to obtain parameter values. Maple software was used for stability analysis. It 

was finally recommended that Immunization organisations in collaboration with government 

ought to reinforce routine DTaP vaccination system and effort should be intensified toward 

increasing the duration of efficacy of the vaccines utilized and decreasing the level of contact 

rate accordingly. 
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Introduction 

One of the respiratory diseases which is most severe in infants is pertussis (Bordetella pertussis) 

popularly known as whooping cough. In 1950s, it was globally a major cause of infant mortality 

before massive vaccination was introduced (Fabricius et al. 2013). They also observed a 

noticeable drop in the disease incidence due to the implementation of the pertussis 

immunization programme. 

Vaccination of pregnant women with Tdap protects the mother from becoming infected with 

pertussis and making her less likely to transmit pertussis to her infant. This is so because it 

stimulates the development of maternal antipertussis antibodies that pass through the placenta, 

providing the new born with protection against pertussis in early life (CDC, published data 

2013). Crowcroft and Pebody (2006) argued that even though there is high vaccination 

coverage over decades whooping cough has not been eliminated in any country. They added 

that the number of deaths in young infants caused as a result of pertussis infection has been 

increased.  

 

Although a new vaccine DTPads, which was a combination of cellular pertussis vaccines with 

diphtheria (DTx) and tetanus tox-oids (TTx), was recommended for routine immunization of 

infants, it was accused of causing CNS injury. But this was later disproved (Robbins et al. 
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2014). The vaccines reduced the incidence of pertussis significantly in the infants throughout 

the developed countries including the United States. It was also supported by Luz, Codeco, 

Werneck and Struchiner, (2006) who emphasize that against severe cases of whooping cough, 

vaccination of children is an effective preventive strategy. Contrarily, although there is high 

vaccination coverage of young infants for more than 50 years in many developed countries, 

pertussis is still classified as a re-emerging disease. 

 

According to Munoz et al. (2014) there is a significant higher concentration of antibodies to 

all vaccine antigens in infants which was as a result of maternal immunization with Tdap from 

birth. This continues till introduction of immunization with DTap at the age of two months and 

did not alter infant responses considerably to DTaP. They also emphasized that to provide a 

conclusive evidence of the safety and efficacy of Tdap immunization at birth, further research 

is therefore needed which led to our current study. 

 

According to Anderson and May 1991; Keeling and Rohani 2007 as in Andrew and Alan 

(2010) deterministic models have traditionally formed the basis of mathematical epidemiology. 

The susceptible-infected-recovered (SIR) and the susceptible-exposed-infected-recovered 

(SEIR) models are the typical methods. However in this study we proposed an MSIR epidemic 

mathematical model that has compartments; maternally derived immunity-susceptible-

Infectious-Recovered. 

 

Due to the continuous outburst of infectious diseases, epidemiological mathematics have been 

grown exponentially wider since the middle of the 20th century (Shah and Gupta, 2013). The 

period of time between the generations of infected individuals determines the speed at which 

an epidemic spreads through a population (Keeling and Danon, 2009). A major goal in the 

treatment of individuals with chronic infectious diseases is to bring about an improvement in 

their functioning and well-being (Stewart, 1989).  According to Abdulrazak, et al. (2012) when 

the incidence of an infection starts to increase, people and government think of how best to 

combat the outbreak. Vaccination campaigns may be costly and time consuming endeavour, so 

any tool that may enable the campaign to become directed or to predict the outcome is highly 

valuable. 

 

Mathematical modelling is becoming an increasingly important branch of Mathematics as 

computers expand our ability to translate mathematical equations and formulations into 

concrete conclusions concerning the world, both natural and artificial that we live in. The 

mechanisms by which disease spread have been studied using the modelling of infectious 

diseases. The spread of infectious diseases has all the time remain a major threat to public 

health (WHO, 2008). Millions of people infected annually from the diseases and millions of 

them die as a result (Badshah, Porwal and Tiwari, 2013).  

 

Several forms of control measures exist, all operate by reducing the average amount of 

transmission between infectious and susceptible individuals, selecting a suitable control 

strategy depends on the nature of the disease. This research is geared towards investigating the 

existing measures to find out how efficient and effective they are. Therefore, with the 

employment of Mathematical model, hopefully the problem will be addressed. This is a step 

forward to see total eradication of the disease. 

 

Statement of the problem  

In the twentieth century, pertussis was a standout amongst the most well-known adolescence 

infections and a significant reason for youth mortality in the United States. Prior to the 
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accessibility of pertussis vaccine in the 1940s, more than 200,000 instances of the pertussis 

were accounted for yearly. Since wide spread use of the vaccine began, a low incidence of 

more than 80% has been recorded compared with the pre-vaccine era.  

According to World Health Organisation (2008), the disease remains a major health problem 

among children in developing countries, with an estimate of 195,000 deaths resulting from the 

disease. This problem is currently affecting children especially under the age of ten in both 

developed and developing countries. Report have shown a total of 48,277 cases of pertussis 

worldwide in 2012 and 28639 cases in 2013.  

 

Aims and objectives 
The general aim of this research work is to evaluate the efficacy of whooping cough control 

measures in Nigeria. To deal with this, it is necessary to address relevant and sufficient 

objectives which may include the following: 

a. To develop a vaccination model for the Pertussis. 

b. To carry out a stability analysis on control measures to evaluate their efficiency and 

effectiveness. 

 

Methodology 

This research work is a quantitative study that involves deterministic approach of differential 

equations and will utilise numerical techniques to perform simulation using Euler’s method. 

The population covers all pertussis record cases for the past one year from four Federal Medical 

Centres in the North-Eastern States of Nigeria. The data collected will be used to obtain 

accurate simulation results. Stability analysis will also be carried out using Maple Software.  

 

Model Formulation 
For many infections, including pertussis, babies are not born into the susceptible compartment 

but are immune to the disease for the first few months of life due to protection from maternal 

antibodies. This new detail can be shown by including an M class, for maternally derived 

immunity at the beginning of the model. 

Therefore, in this study we proposed an MSIR epidemic mathematical model that has 

compartments; maternally derived immunity, Susceptible, Infectious and Recovered. We 

prefer this compartment model over others because it generalise some of the models such as 

SIR and SIS as it takes care of the M class which is left in those models. It does not also make 

things too complicated as in the models with more and more compartments 

 

Assumptions 

Let us denote M, S, I, R be the population members of each class. Regarding the transmission 

and incubation period, the following assumptions are considered. 

1. The population is mixing in a homogeneous manner. That is everyone has equal 

chances of contacting the disease that a proportion of the population of new-borns 

is immunized against pertussis infection through vaccination; 

2. Expiration of duration of vaccine efficacy at constant rate; 

3. Birth and death occur at constant rate; 

4. That people in the compartment have equal natural death rate; 

5. Recovery occurs at a constant rate; 

6. That all new-borns are previously uninfected by pertussis and therefore join either 

the immunized or the susceptible compartment depending on whether they are 

vaccinated or not. 
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Epidemiological diagram of the model: 

                                      (1 − 𝑎)𝑏         σ 

 

 𝑎𝑏                    α                         β                           ϒ  

 

 

  

                         μ μ                    μ     μ 

 

Definition of Parameters 

𝒂 is the proportion of new birth given Diphtheria-Tetanus-acellular-Pertussis (DTaP) vaccines 

at birth to protect against infection; 

𝒂𝒃 is the proportion of incoming individuals immunized against infection; 
(𝟏 − 𝒂)𝒃 represents population of individuals not immunized against infection; 

μ represents natural death rate; 

α represents the rate of vaccine efficacy; 

β represents rate of transmission; 

ϒ stands for the rate of successful cure of infections pertussis patients (removal rate); 

σ represents death rate caused as a result of chronic pertussis infection. 

 

Model Description  

The population is partitioned into four compartments. A proportion 𝑎 of new births were given 

DTaP vaccines at birth to protect them against infection. The immunized compartment changes 

due to the coming in of the immunized children into the population in which it was assumed 

that a proportion 𝑎𝑏 of the incoming individuals are immunized against infection. The 

susceptible population increases because of the coming in of new births that were not 

immunized against infection into the population at the rate (1 − 𝑎)𝑏, this compartment reduces 

because of the expiration of vaccine efficacy duration at the rate α and also by natural death at 

the rate μ and infection with incident rate of infection β. 

 

Similarly, the population dynamic of the infectious class grows with the instantaneous 

incidence rate of infection β resulting from contacts of members of susceptible class with 

infectious class. This class also reduces by natural death rate μ, successful cure of infectious 

pertussis patients at the rate ϒ and death caused as a result of chronic pertussis infection at the 

rate σ. Finally, the dynamic of the recovered class increases with successful cure of infectious 

pertussis patients at the rate ϒ and decreases by natural death rate μ. 

 

Model Equations 

Using the assumptions stated above, the model will be of the form 
𝑑𝑀

𝑑𝑡
= 𝑎𝑏 − 𝛼𝑀 − 𝜇𝑀                      

𝑑𝑆

𝑑𝑡
= (1 − 𝑎)𝑏 + 𝛼𝑀 − 𝛽𝑆𝐼 − 𝜇𝑆 

𝑑𝐼

𝑑𝑡
= 𝛽𝑆𝐼 − 𝛾𝐼 − 𝜇𝐼 − 𝜎𝐼                 

𝑑𝑅

𝑑𝑡
= 𝛾𝐼 − 𝜇𝑅                                       

At steady states: 

 
𝑑𝑀

𝑑𝑡
=

𝑑𝑆

𝑑𝑡
=

𝑑𝐼

𝑑𝑡
=

𝑑𝑅

𝑑𝑡
= 0 

M S I R 
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This gives; 

 𝑎𝑏 − 𝛼𝑀 − 𝜇𝑀 = 0               ……..……….…..(1.1) 

 (1 − 𝑎)𝑏 + 𝛼𝑀 − 𝛽𝑆𝐼 − 𝜇𝑆 = 0               .………………...(1.2) 

 𝛽𝑆𝐼 − 𝛾𝐼 − 𝜇𝐼 − 𝜎𝐼 = 0                                 ..…...……  ……..(1.3) 

 𝛾𝐼 − 𝜇𝑅 = 0                …………………..(1.4) 

From (1): 

 𝑀 =
𝑎𝑏

𝛼+𝜇
                                                                 … … … … … . … … (1.5) 

From (3): (𝛽𝑆 − (𝛾 + 𝜇 + 𝜎)𝐼 = 0 

𝐸𝑖𝑡ℎ𝑒𝑟         𝐼 = 0   𝑜𝑟   𝑆 =
𝛾 + 𝜇 + 𝜎

𝛽
          … … … … … … … … … … … . (1.6)        

      

From (4):  𝑅 =
𝛾𝐼

𝜇
                                                        . . … … … … … . … . . … … . (1.7) 

𝐴𝑡   𝐼 = 0,        𝑅 = 0 

Substitute for 𝐼 = 0   𝑎𝑛𝑑   𝑀 =
𝑎𝑏

𝛼+𝜇
  in equation (1.2) to get: 

                         (1 − 𝑎)𝑏 +
𝛼𝑎𝑏

𝛼 + 𝜇
= 𝜇𝑆 

 

𝑆 =
𝛼𝑏 + (1 − 𝑎)𝜇𝑏

𝜇(𝛼 + 𝜇)
                                 … … … … … … … … … … … … . . (1.8) 

 Hence the Disease-Free-Steady States are: 

                                                𝑀∗ =  
𝑎𝑏

𝛼 + 𝜇
                                              … … … … … . . (1.9) 

  

    𝑆∗ =
𝛼𝑏 + (1 − 𝑎)𝜇𝑏

𝜇(𝛼 + 𝜇)
                                                      … … … … … … . (2.0) 

                            𝐼∗ = 0                                                                            … … … … … … . (2.1) 

   𝑅∗ = 0                                                                                   … . … … … … … (2.2) 
Substituting equations (1.5) and (1.6) in (1.2) gives 

                            (1 − 𝑎)𝑏 + 𝛼 (
𝑎𝑏

𝛼 + 𝜇
) − 𝛽𝐼 (

𝛾 + 𝜇 + 𝜎

𝛽
) − 𝜇 (

𝛾 + 𝜇 + 𝜎

𝛽
) = 0 

⇒       𝐼 =
(𝛼 + 𝜇)[𝛽𝑏 − 𝜇(𝛾 + 𝜇 + 𝜎)] − 𝛽𝜇𝑎𝑏

𝛽(𝛼 + 𝜇)(𝛾 + 𝜇 + 𝜎)
                           . . … … … . … … (2.3) 

And also, substituting equation (9) in (4) gives: 

𝑅 =
𝛾[(𝛼 + 𝜇){𝛽𝑏 − 𝜇(𝛾 + 𝜇 + 𝜎)} − 𝛽𝜇𝑎𝑏]

𝛽𝜇(𝛼 + 𝜇)(𝛾 + 𝜇 + 𝜎)
         … . … . … … … … (2.4) 

Hence the epidemic steady states are:  

                        𝑀∗ =
𝑎𝑏

𝛼 + 𝜇
                                            … … … … … … … . (2.5) 

                        S∗ =
γ + μ + σ

β
                                         . . … … … … … … (2.6) 

       𝐼∗ =
(𝛼 + 𝜇)[𝛽𝑏 − 𝜇(𝛾 + 𝜇 + 𝜎)] − 𝛽𝜇𝑎𝑏

𝛽(𝛼 + 𝜇)(𝛾 + 𝜇 + 𝜎)
    … … … . … … … . . (2.7) 

𝑅∗ =
𝛾[(𝛼 + 𝜇){𝛽𝑏 − 𝜇(𝛾 + 𝜇 + 𝜎)} − 𝛽𝜇𝑎𝑏]

𝛽𝜇(𝛼 + 𝜇)(𝛾 + 𝜇 + 𝜎)
   … … … … … … … . (2.8) 
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Basic Reproduction Number, 𝑹𝑶 

In epidemiology, the basic reproduction number refers to the number of new cases of infection 

linked to a person infected shortly after the pathogen was introduced into population with no 

pre-existing immunity. Generally the higher the value of 𝑅𝑂, the harder it is to control the 

epidemic. When  𝑅𝑜 < 1 , the infection will die out in the long run. But when  𝑅𝑜 > 1 , the 

infection will invade.  

 The Threshold, 

                                
1

𝑅𝑂
=

𝛾 + 𝜇 + 𝜎

𝛽
                      … … … … … … … … (2.9) 

This implies,   𝑅𝑂 =
𝛽

𝛾+𝜇+𝜎
                                                         … … … … … … … … (3.0)    

 

Numerical calculation of 𝑹𝑶 

Take parameters in the model system as ϒ = 0.213, β = 0.235, μ = 0.0034, σ = 0.142  

For these parameter values, the basic reproduction number for the Disease-Free Equilibrium 

(DFE) is 𝑅𝑜 = 0.6557 < 1 .This shows that the infection is temporal and the disease dies out 

in time. If we keep the value of μ unchanged and let ϒ= 0.0213, β = 0.0651, σ = 0.0142, then 

the basic reproduction number is calculated as 𝑅𝑂 = 1.6735 > 1 and the disease becomes 

endemic. In this situation, an average infectious individual is able to replace itself and the 

number of infected rises and an epidemic reveals.  

 

Stability Analysis 

Having obtained the equilibrium states, we now move forward to investigate the stability of 

the equilibrium states by examine the behaviour of the model near the equilibrium states. This 

is done by computing the Jacobian matrix as follows: 

𝐽 = (

−(𝛼 + 𝜇) 0
𝛼 −(𝛽𝐼 + 𝜇)

0                          0
−𝛽𝑆                          0

0                𝛽𝐼
0                0

𝛽𝑆 − (𝛾 + 𝜇 + 𝜎) 0
𝛾                  −𝜇

) 

The characteristic equation of the Jacobian matrix is  

|𝐽 − 𝜆𝐼| = |

−(𝛼 + 𝜇 + 𝜆) 0
𝛼 −(𝛽𝐼 + 𝜇 + 𝜆)

0                         0
−𝛽𝑆                         0

0                        𝛽𝐼
0                          0

𝛽𝑆 − (𝛾 + 𝜇 + 𝜎) 0
𝛾       −(𝜇 + 𝜆)

| = 0 

(𝛼 + 𝜇 + 𝜆){−(𝛽𝐼 + 𝜇 + 𝜆)[−(𝜇 + 𝜆)(−𝛾 − 𝜇 − 𝜎 + 𝛽𝑆 − 𝜆)]} = 0 

 

Zero Equilibrium State 

At the Disease-Free-Equilibrium (DFE); 

𝛼 + 𝜇 + 𝜆 = 0 

That is  𝜆1 = −𝛼 − 𝜇 

And   𝛽𝐼 + 𝜇 + 𝜆 = 0 

Putting         𝐼 = 0    𝑖𝑛      𝛽𝐼 + 𝜇 + 𝜆 = 0,      𝑔𝑖𝑣𝑒𝑠     𝜆2 = −𝜇 

Then  𝜇 + 𝜆 = 0             ⇒        𝜆3 = −𝜇 

Also, −𝛾 − 𝜇 − 𝜎 + 𝛽𝑆 − 𝜆 = 0 

Putting        𝑆 =
𝛼𝑏+(1−𝑎)𝜇𝑏

𝜇(𝛼+𝜇)
  ,   𝑔𝑖𝑣𝑒𝑠    

𝜆4 =
𝛼𝛽𝑏 + (1 − 𝑎)𝛽𝜇𝑏

𝜇(𝛼 + 𝜇)
− (𝛾 + 𝜇 + 𝜎)                                                                

𝜆1 ,𝜆2 , 𝜆3 are all negative and 𝜆4 should also be negative if  
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𝛼𝛽𝑏+(1−𝑎)𝛽𝜇𝑏

𝜇(𝛼+𝜇)
< (𝛾 + 𝜇 + 𝜎)           

 

Non-Zero Equilibrium State 

To investigate the stability of the endemic equilibrium state, we did apply the Bellman and 

Cooke’s theorem as stated in Momoh, et al., (2014). 

 

Bellman and Cooke’s theorem 

𝐿𝑒𝑡 𝐻(𝑧) = 𝑃(𝑧, 𝑒𝑥) 𝑤ℎ𝑒𝑟𝑒 𝑃(𝑧, 𝑤) is a polynomial with principal term. 

Suppose,  𝐻(𝑖𝑦), 𝑦 ∈ ℜ, is separated into its real and imaginary parts: 

𝐻(𝑖𝑦) = 𝐹(𝑦) + 𝑖𝐺(𝑦) 

If the zeros of 𝐻(𝑦) have negative real parts, then the zeros of 𝐹(𝑦) and 𝐺(𝑦)are real, simple 

and alternate. Then  

𝐹(0)𝐺′(0) − 𝐹′(0)𝐺(0) > 0, ∀𝑦 ∈ ℜ                      … … … . … … . (3.1) 

Conversely, all zeros of 𝐻(𝑧) will be in the left half plane provided that either of the following 

condition is satisfied: 

1. All the zeros of 𝐹(𝑦) and 𝐺(𝑦) are real, simple and alternate and the inequality (3.1) is 

satisfied at least for one y 

2. All zeros of 𝐹(𝑦) are real and for each zero, the relation (3.1) is satisfied 

3. All zeros of 𝐺(𝑦) are real and for each zero, the relation (3.1) is satisfied 

Applying the theorem: 

|𝐽 − 𝜆𝐼| = 𝜆4 + (4𝜇 − 𝛽𝑆 + 𝛾 + 𝜎 + 𝛽𝐼 + 𝛼)𝜆3 + (−3𝛽𝑆𝜇 + 3𝛾𝜇 + 6𝜇2 + 3𝜎𝜇 + 3𝜇𝛽𝐼 +
                                     3𝛼𝜇 − 𝛽𝑆𝛽𝐼 − 𝛼𝛽𝑆 + 𝛽𝛾𝐼 + 𝛼𝛾 + 𝛽𝜎𝐼 + 𝛼𝜎 + 𝛼𝛽𝐼)𝜆2 + (3𝛾𝜇2 +
                                             3𝜇2𝜎 + 3𝛽𝐼𝜇2 +  3𝛼𝜇2 − 2𝛽𝑆𝛽𝐼𝜇 − 2𝛽𝑆𝛼𝜇 + 2𝛽𝐼𝛾𝜇 + 2𝛼𝛾𝜇 +
                                                  2𝛼𝜇𝜎 + 2𝛽𝐼𝛼𝜇 − 𝛼𝛽𝑆𝛽𝐼 + 𝛼𝛾𝛽𝐼 + 𝛼𝜎𝛽𝐼 − 3𝜇2𝛽𝑆 + 4𝜇3)𝜆 +
                                                       𝜇(𝛽𝑆 + 𝛾 + 𝜇 + 𝜎)(𝛽𝐼 + 𝜇)(𝛼 + 𝜇) = 0    

𝐻(𝑖𝑞) = (𝑖𝑞)4 + (4𝜇 − 𝛽𝑆 + 𝛾 + 𝜎 + 𝛽𝐼 + 𝛼)(𝑖𝑞)3 + (−3𝛽𝑆𝜇 + 3𝛾𝜇 + 6𝜇2 + 3𝜎𝜇 +
                                 3𝜇𝛽𝐼 + 3𝛼𝜇 − 𝛽𝑆𝛽𝐼 − 𝛼𝛽𝑆 + 𝛽𝛾𝐼 + 𝛼𝛾 + 𝛽𝜎𝐼 + 𝛼𝜎 + 𝛼𝛽𝐼)(𝑖𝑞)2 +
                                 (3𝛾𝜇2 + 3𝜇2𝜎 + 3𝛽𝐼𝜇2 +  3𝛼𝜇2 − 2𝛽𝑆𝛽𝐼𝜇 − 2𝛽𝑆𝛼𝜇 + 2𝛽𝐼𝛾𝜇 + 2𝛼𝛾𝜇 +
                                               2𝛼𝜇𝜎 + 2𝛽𝐼𝛼𝜇 − 𝛼𝛽𝑆𝛽𝐼 + 𝛼𝛾𝛽𝐼 + 𝛼𝜎𝛽𝐼 − 3𝜇2𝛽𝑆 + 4𝜇3)(𝑖𝑞) +
                                                𝜇(𝛽𝑆 + 𝛾 + 𝜇 + 𝜎)(𝛽𝐼 + 𝜇)(𝛼 + 𝜇) = 0  

𝐻(𝑖𝑞) = 𝐹(𝑞) + 𝑖𝐺(𝑞) Where:    

       𝐹(𝑞) = 𝑞4 + (−3𝜇𝛽𝑆 + 3𝜇𝛾 + 6𝜇2 + 3𝜇𝜎 + 3𝜇𝛽𝐼 + 3𝜇𝛼 −  𝛽𝑆𝛽𝐼 − 𝛼𝛽𝑆 + 𝛾𝛽𝐼 + 𝛼𝛾
+ 𝜎𝛽𝐼 + 𝛼𝜎 + 𝛼𝛽𝐼)(𝑞)2 + 𝜇(−𝛽𝑆 + 𝛾 + 𝜇 + 𝜎)(𝛽𝐼 + 𝜇)(𝛼 + 𝜇) 

 𝐹(0) = 𝜇(𝛽𝑆 + 𝛾 + 𝜇 + 𝜎)(𝛽𝐼 + 𝜇)(𝛼 + 𝜇) 
And 

𝐹′(𝑞) = 4𝑞3 + 2(−3𝜇𝛽𝑆 + 3𝜇𝛾 + 6𝜇2 + 3𝜇𝜎 + 3𝜇𝛽𝐼 + 3𝜇𝛼 − 𝛽𝑆𝛽𝐼 − 𝛼𝛽𝑆 + 𝛾𝛽𝐼 + 𝛼𝛾
+ 𝜎𝛽𝐼 + 𝛼𝜎 +  𝛼𝛽𝐼)𝑞                                                                              

   𝐹′(0) = 0 
 Also,              

𝐺(𝑞) = (4𝜇 − 𝛽𝑆 + 𝛼 + 𝛾 + 𝜎 + 𝛽𝐼)𝑞3 + (3𝛾𝜇2 + 3𝜇2𝜎 + 3𝜇2𝛽𝐼 + 3𝛼𝜇2 − 2𝜇𝛽𝑆𝛽𝐼
− 2𝛼𝜇𝛽𝑆 + 2𝛾𝜇𝛽𝐼 + 2𝛼𝛾𝜇 + 2𝛼𝜇𝜎 + 2𝛼𝜇𝛽𝐼 − 𝛼𝛽𝑆𝛽𝐼 + 𝛼𝛾𝛽𝐼 + 𝛼𝜎𝛽𝐼
− 3𝜇2𝛽𝑆 + 4𝜇3)𝑞 

   𝐺(0) = 0  

 𝐺′(𝑞) = 3(4𝜇 − 𝛽𝑆 + 𝛼 + 𝛾 + 𝜎 + 𝛽𝐼)𝑞2 + (3𝛾𝜇2 + 3𝜇2𝜎 + 3𝜇2𝛽𝐼 + 3𝛼𝜇2 − 2𝜇𝛽𝑆𝛽𝐼  
− 2𝛼𝜇𝛽𝑆 + 2𝛾𝜇𝛽𝐼 + 2𝛼𝛾𝜇 + 2𝛼𝜇𝜎 + 2𝛼𝜇𝛽𝐼 − 𝛼𝛽𝑆𝛽𝐼 + 𝛼𝛾𝛽𝐼 + 𝛼𝜎𝛽𝐼
− 3𝜇2𝛽𝑆 + 4𝜇3) 

   𝐺′(0) = (3𝛾𝜇2 + 3𝜇2𝜎 + 3𝜇2𝛽𝐼 + 3𝛼𝜇2 − 2𝜇𝛽𝑆𝛽𝐼  − 2𝛼𝜇𝛽𝑆 + 2𝛾𝜇𝛽𝐼 + 2𝛼𝛾𝜇 +
                    2𝛼𝜇𝜎 + 2𝛼𝜇𝛽𝐼 − 𝛼𝛽𝑆𝛽𝐼 + 𝛼𝛾𝛽𝐼 + 𝛼𝜎𝛽𝐼 − 3𝜇2𝛽𝑆 + 4𝜇3) 
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Therefore, 

  𝐽 = 𝐹(0)𝐺′(0) > 0                                      … … … … … … … (3.2) 

Substituting the expressions for 𝑆∗𝑎𝑛𝑑 𝐼∗ in equation (3.2) above, we evaluate 𝐽 using the 

parameter values with the Maple software and the result is presented in table 1.1 below:  

 

Table 1.1 

𝒂 𝒃 𝜶 𝜷 𝜸 𝝁 𝝈 𝑱 𝑹𝒆𝒎𝒂𝒓𝒌 

0.30 0.90 0.10 0.00 0.00 0.01 0.00 0.00000000000000 Threshold 

0.30 0.90 0.20 1.00 0.10 0.01 0.10 0.000001648565089 Stable 

0.30 0.90 0.30 1.50 0.20 0.01 0.30 -0.00006251714876 Unstable 

0.30 0.90 0.40 2.00 0.30 0.01 0.40 -0.00008066708356 Unstable 

0.30 0.90 0.50 2.50 0.40 0.01 0.20 0.00009293714470 Stable 

0.30 0.90 0.60 3.00 0.50 0.01 0.20 0.0002617861087 Stable 

0.30 0.90 0.70 3.50 0.60 0.01 0.20 0.0005364792478 Stable 

0.30 0.90 0.80 4.00 0.70 0.01 0.00 0.002377517469 Stable 

0.30 0.90 0.90 4.50 0.80 0.01 0.10 0.0002754776803 Stable 

0.30 0.90 1.00 5.00 0.90 0.01 1.00 -0.002089504255 Unstable 

 

The following figures show the simulation results of the model using the parameter values 

collected from the four selected medical centres named as 𝐻1, 𝐻2, 𝐻3, and 𝐻4 

 
Figure 1.1 Simulation result of 𝐻1 

 

 
Figure 1.2 Simulation result of 𝐻2 
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Figure 1.3 Simulation result of 𝐻3 

 

 
Figure 1.4 Simulation result of 𝐻4 

 

From figure 1.1, it is clearly seen that every new born babies were given protection from 

maternal antibodies. They were immunised within the first few months of life and pass through 

a maternally derived immunity. This compartment remained static because the birth and death 

occur at constant rate. Some of these individuals moved into the susceptible compartment 

where everyone has equal chance of becoming infected. As infection starts manifesting, the 

population in the susceptible class reduces because some babies became infected and moved 

to the infectious class while others die naturally. This process continues till vaccination 

campaign was implemented. Then individuals in the infectious compartment begin to recover 

from the disease. 

 

According to figure 1.1, infected individual get recovered at around forty-five (45) days of 

infection. From figure 1.2, we observed that the infected individual can get recovered within 

eighty-five (85) days of infection. Figure 1.3 indicates that the infected individual can be 

recovered at around sixty-five (65) days of infection. Whereas figure 1.4 shows that infected 

individual can get recovered from the disease within hundred and fifty (150) days of infection. 

The disparity in the duration for every individual to recover from the disease as seen above, 

depends upon the type of vaccine used and the time of application. 

 

Discussion 

In this study, stability analysis of Whooping Cough have been investigated on assessing the 

efficacy of its measures of control. Bellman and Cooke’s Theorem techniques was used in the 

analysis of this model to test for the stability. This fundamental theorem establishes the analysis 

of the stability of characteristic equation as stated by Momoh, et al., (2014). The system (1.1) 

– (1.4) is locally stable around the epidemic equilibrium state. When the contact rate increases 
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from 1.0 to 1.5 then to 2.0, the system is unstable. However, with increase the vaccine efficacy, 

although the contact rate increases, the system around the epidemic equilibrium state remain 

stable up till when the contact rate is kept below 5.0 and otherwise the epidemic equilibrium 

state is unstable. 

 

For the DFE to be stable, it is necessary that all the four eigenvalues are negative and this will 

be achieved by having 
𝛼𝛽𝑏 + (1 − 𝑎)𝛽𝜇𝑏

𝜇(𝛼 + 𝜇)
< (𝛾 + 𝜇 + 𝜎)         

This indicates that at this state, Whooping Cough dies out in time. This was equally observed 

by Fabricius et al. (2013) who realised a noticeable drop in the disease incidence due to the 

implementation of the pertussis immunization programme. However, there is need for the 

persistence of Vaccination of pregnant women with DTap to protects the mother from 

becoming infected with pertussis and making her less likely to transmit pertussis to her infant. 

 

Conclusion 

In this research, stability analysis of pertussis has been investigated on the effect of DTaP 

vaccine to the prevention of whooping cough using an MSIR Mathematical model. It was 

successfully proved that provided the four eigenvalues found to be negative the disease free 

equilibrium state is stable. At this point, it is relevant to indicate that pertussis will be 

completely eradicated. However, it is important to note that for the population to be sustained, 

the recovery rate from infectious class must be greater or equal to the natural death rate 

combined with the death rate due to infection else the population will approach to extinction. 

 

Recommendation 

Immunization organisations in collaboration with government ought to reinforce routine DTap 

vaccination system and effort should be intensified toward increasing the duration of efficacy 

of the vaccines utilized and decreasing the level of contact rate accordingly. The model 

developed in this paper can be used in interactive workshops with health planners and other 

stakeholders in the analysis of pertussis control strategies so that participants could gain a better 

understanding of how vaccination campaign become much effective in controlling  the disease. 
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